147 research outputs found

    A Monte Carlo study of temperature-programmed desorption spectra with attractive lateral interactions

    Get PDF
    We present results of a Monte Carlo study of temperature-programmed desorption in a model system with attractive lateral interactions. It is shown that even for weak interactions there are large shifts of the peak maximum temperatures with initial coverage. The system has a transition temperature below which the desorption has a negative order. An analytical expression for this temperature is derived. The relation between the model and real systems is discussed.Comment: Accepted for publication in Phys.Rev.B15, 10 pages (REVTeX), 2 figures (PostScript); discussion about Xe/Pt(111) adde

    Study of levitating nanoparticles using ultracold neutrons

    Full text link
    Physical adsorption of atoms, molecules and clusters on surface is known. It is linked to many phenomena in physics, chemistry, and biology. Usually the studies of adsorption are limited to the particle sizes of up to ~10^2-10^3 atoms. Following a general formalism, we apply it to even larger objects and discover qualitatively new phenomena. A large particle is bound to surface in a deep and broad potential well formed by van der Waals/ Casimir-Polder forces. The well depth is significantly larger than the characteristic thermal energy. Nanoparticles in high-excited bound states form two-dimensional gas of objects quasi-freely traveling along surface. A particularly interesting prediction is small-energy-transfer scattering of UCN on solid/ liquid surfaces covered by such levitating nanoparticles/ nano-droplets. The change in UCN energy is due to the Doppler shift induced by UCN collisions with nanoparticles; the energy change is about as small as the UCN initial energy. We compare theoretical estimations of our model to all relevant existing data and state that they agree quite well. As our theoretical formalism provides robust predictions and the experimental data are rather precise, we conclude that the recently discovered intriguing phenomenon of small heating of UCN in traps is due to their collisions with such levitating nanoparticles. Moreover, this new phenomenon might be relevant to the striking contradiction between results of the neutron lifetime measurements with smallest reported uncertainties as it might cause major false effects in these experiments; thus it affects fundamental conclusions concerning precision checks of unitarity of the Cabibbo-Kobayashi-Maskawa matrix, cosmology, astrophysics. Dedicated measurements of UCN up-scattering on specially prepared surfaces and nanoparticles levitating above them might provide a unique method to study surface potentials.Comment: 20 pages, 12 figure

    KINETIC ANALYSIS OF THE CATALYTIC DECOMPOSITION OF HYDRAZINE

    No full text
    The bond-order conservation method was used to study the catalytic decomposition of N2H4. Variation in the activation energy, E, of the most relevant steps was calculated as a function of the enthalpy of adsorption of N, QN, between 0 and 1250 kJmol-1. Results suggest that below QN = 520 kJmol-1 the catalytic decomposition of N2H4 produces mostly N2 and H2. Above QN = 520 kJmol-1, NH3 and N2 are the main products. Near QN = 520 kJmol-1 N2, H2 and NH3 are obtained, in agreement with experimental results on different metals

    Foreward from the editors

    No full text
    • 

    corecore